Show simple item record

dc.contributor.advisorStephen Graves and Deborah Nightingale.en_US
dc.contributor.authorMyers, Kevin Michaelen_US
dc.contributor.otherLeaders for Manufacturing Program.en_US
dc.date.accessioned2007-12-07T16:08:16Z
dc.date.available2007-12-07T16:08:16Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/39695
dc.descriptionThesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics; in conjunction with the Leaders for Manufacturing Program at MIT, 2007.en_US
dc.descriptionIncludes bibliographical references (p. 89-90).en_US
dc.description.abstractWithin the Integrated Defense Systems of The Boeing Company, aftermarket support of military aircraft serves as an increasingly large source of revenue. One of the newest contracts between Boeing and the U.S. Government created such a supply partnership at the Army Rotorcraft Repair Depot in Corpus Christi, Texas. At this depot, all Army helicopters, including Boeing's AH-64 Apache Attack helicopter and CH-47 Chinook Cargo helicopter undergo major repair and overhaul. In 2004, Boeing entered an agreement with the U.S. Government to assume responsibility of the repair depot's supply chain for aftermarket parts for Boeing rotorcraft. Over the last two years, Boeing has been creating and refining Corpus Christi's support structure to ensure that the required repair parts arrive when demanded. In establishing this new supply chain, Boeing has identified numerous inefficiencies as a result of inaccurate and highly volatile forecasts. This thesis examines the impact of volatility within the new support structure and creates flexible solutions to mitigate its negative effects on lead times, multiple sources of supply and inventory management.en_US
dc.description.abstract(cont.) Efforts to increase communication flow across the supply chain are used to capitalize on economies of scale for cost reduction while safety stock recommendations are made for critical end-items. Monte Carlo simulations are employed to justify and validate the solutions. The results of the thesis reveal that a strategic selection of raw material safety stock can reduce procurement lead times by an average 61% for a subset of parts while maintaining financial responsibility. Additionally, by leveraging cost reduction techniques, an average increase of 11% in Boeing's income from sales can be achieved while eliminating inefficient administrative delays and increasing customer fulfillment rates. These two recommendations demonstrate specific solutions for mitigating the effects of demand volatility and inaccurate forecasting.en_US
dc.description.statementofresponsibilityby Kevin Michael Myers.en_US
dc.format.extent90 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectSloan School of Management.en_US
dc.subjectAeronautics and Astronautics.en_US
dc.subjectLeaders for Manufacturing Program.en_US
dc.titleBuilding flexibility in the volatile aftermarket parts : supply chains of the defense aerospace industryen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.description.degreeM.B.A.en_US
dc.contributor.departmentLeaders for Manufacturing Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.contributor.departmentSloan School of Management
dc.identifier.oclc176070448en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record