Show simple item record

dc.contributor.authorXu, Sheng
dc.contributor.authorFreund, Robert M.
dc.contributor.authorSun, Jie
dc.date.accessioned2003-12-23T03:14:50Z
dc.date.available2003-12-23T03:14:50Z
dc.date.issued2002-01
dc.identifier.urihttp://hdl.handle.net/1721.1/4015
dc.description.abstractGiven a set of circles C = {c₁, ..., cn}on the Euclidean plane with centers {(a₁, b₁), ..., (an, b<sub>n</sub>)}and radii {r₁..., r<n},the smallest enclosing circle (of fixed circles) problem is to find the circle of minimum radius that encloses all circles in C. We survey four known approaches for this problem, including a second order cone reformulation, a subgradient approach, a quadratic programming scheme, and a randomized incremental algorithm. For the last algorithm we also give some implementation details. It turns out the quadratic programming scheme outperforms the other three in our computational experiment.en
dc.description.sponsorshipSingapore-MIT Alliance (SMA)en
dc.format.extent175555 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesHigh Performance Computation for Engineered Systems (HPCES);
dc.subjectcomputational geometryen
dc.subjectoptimizationen
dc.titleSolution Methodologies for the Smallest Enclosing Circle Problemen
dc.typeArticleen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record