Solution Methodologies for the Smallest Enclosing Circle Problem
dc.contributor.author | Xu, Sheng | |
dc.contributor.author | Freund, Robert M. | |
dc.contributor.author | Sun, Jie | |
dc.date.accessioned | 2003-12-23T03:14:50Z | |
dc.date.available | 2003-12-23T03:14:50Z | |
dc.date.issued | 2002-01 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/4015 | |
dc.description.abstract | Given a set of circles C = {c₁, ..., cn}on the Euclidean plane with centers {(a₁, b₁), ..., (an, b<sub>n</sub>)}and radii {r₁..., r<n},the smallest enclosing circle (of fixed circles) problem is to ï¬nd the circle of minimum radius that encloses all circles in C. We survey four known approaches for this problem, including a second order cone reformulation, a subgradient approach, a quadratic programming scheme, and a randomized incremental algorithm. For the last algorithm we also give some implementation details. It turns out the quadratic programming scheme outperforms the other three in our computational experiment. | en |
dc.description.sponsorship | Singapore-MIT Alliance (SMA) | en |
dc.format.extent | 175555 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en_US | |
dc.relation.ispartofseries | High Performance Computation for Engineered Systems (HPCES); | |
dc.subject | computational geometry | en |
dc.subject | optimization | en |
dc.title | Solution Methodologies for the Smallest Enclosing Circle Problem | en |
dc.type | Article | en |