Show simple item record

dc.contributor.advisorLawrence J. Pratt.en_US
dc.contributor.authorDell, Rebecca Walshen_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2010-10-29T18:03:59Z
dc.date.available2010-10-29T18:03:59Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/59657
dc.descriptionThesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2010.en_US
dc.descriptionIncludes bibliographical references (p. 54-56).en_US
dc.description.abstractThis paper begins to explore a previously neglected mechanism for abyssal ocean mixing using bottom boundary layer dynamics. Abyssal mixing and the associated upward buoyancy fluxes are necessary to balance the sinking of dense waters at high latitudes and to close the global overturning circulation. Previous studies have concentrated on the hypothesis that the primary mechanism for this mixing is breaking internal waves generated by tidal flows over rough topography. However, intriguing observations, particularly from the Brazil Basin Tracer Release Experiment, suggest that mixing in the flank canyons of the Mid-Atlantic Ridge generated when strong mean flows interact with the many sills and constrictions within the canyons may represent a dynamically important amount of abyssal mixing. The energy pathways and mechanisms of this mixing are much less clear than in the case of breaking internal waves. This study attempts to clarify this by suggesting an analogy with an idealized diffusive boundary layer over a sloping bottom. This boundary layer is characterized by up-slope flows powered by the buoyancy flux in the fluid far from the boundary. Here we explore the energy budget of the boundary layer, and find that the diffusive boundary layer provides flows that are generally consistent with those observed in submarine canyons. In addition, we derive the vertical velocity in the far-field fluid, analogous to an Ekman pumping velocity, that these boundary layers can induce when the bottom slope is not constant. Finally, we present both theoretical and numerical models of exchange flows between the bottom boundary and the far-field flow when the bottom slope is not constant. These exchange flows provide a mechanism by which boundary-driven mixing can affect the overall stratification and buoyancy fluxes of the basin interior.en_US
dc.description.statementofresponsibilityby Rebecca Walsh Dell.en_US
dc.format.extent56 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectJoint Program in Oceanography/Applied Ocean Science and Engineering.en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.subject.lcshOceanic mixingen_US
dc.subject.lcshAbyssal zoneen_US
dc.titleAbyssal mixing from bottom boundary effects in Mid-Atlantic Ridge flank canyonsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentJoint Program in Oceanography/Applied Ocean Science and Engineeringen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc645263846en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record