Show simple item record

dc.contributor.authorBalasubramanian, Vijayen_US
dc.date.accessioned2004-10-20T19:55:31Z
dc.date.available2004-10-20T19:55:31Z
dc.date.issued1993-01-01en_US
dc.identifier.otherAITR-1370en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/6801
dc.description.abstractThis report studies when and why two Hidden Markov Models (HMMs) may represent the same stochastic process. HMMs are characterized in terms of equivalence classes whose elements represent identical stochastic processes. This characterization yields polynomial time algorithms to detect equivalent HMMs. We also find fast algorithms to reduce HMMs to essentially unique and minimal canonical representations. The reduction to a canonical form leads to the definition of 'Generalized Markov Models' which are essentially HMMs without the positivity constraint on their parameters. We discuss how this generalization can yield more parsimonious representations of stochastic processes at the cost of the probabilistic interpretation of the model parameters.en_US
dc.format.extent111 p.en_US
dc.format.extent339883 bytes
dc.format.extent1337526 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAITR-1370en_US
dc.subjectHideen Markov Modelsen_US
dc.subjectminimazationen_US
dc.subjectstatistical modellingen_US
dc.subjectsstochastic processesen_US
dc.titleEquivalence and Reduction of Hidden Markov Modelsen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record