Temporal Surface Reconstruction
dc.contributor.author | Heel, Joachim | en_US |
dc.date.accessioned | 2004-10-20T19:57:38Z | |
dc.date.available | 2004-10-20T19:57:38Z | |
dc.date.issued | 1991-05-01 | en_US |
dc.identifier.other | AITR-1296 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/6808 | |
dc.description.abstract | This thesis investigates the problem of estimating the three-dimensional structure of a scene from a sequence of images. Structure information is recovered from images continuously using shading, motion or other visual mechanisms. A Kalman filter represents structure in a dense depth map. With each new image, the filter first updates the current depth map by a minimum variance estimate that best fits the new image data and the previous estimate. Then the structure estimate is predicted for the next time step by a transformation that accounts for relative camera motion. Experimental evaluation shows the significant improvement in quality and computation time that can be achieved using this technique. | en_US |
dc.format.extent | 149 p. | en_US |
dc.format.extent | 23730458 bytes | |
dc.format.extent | 8484961 bytes | |
dc.format.mimetype | application/postscript | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en_US | |
dc.relation.ispartofseries | AITR-1296 | en_US |
dc.subject | 3D reconstruction | en_US |
dc.subject | Kalman Filter | en_US |
dc.subject | temporal vision | en_US |
dc.subject | structuresestimation | en_US |
dc.subject | surface reconstruction | en_US |
dc.title | Temporal Surface Reconstruction | en_US |