Show simple item record

dc.contributor.authorHeel, Joachimen_US
dc.date.accessioned2004-10-20T19:57:38Z
dc.date.available2004-10-20T19:57:38Z
dc.date.issued1991-05-01en_US
dc.identifier.otherAITR-1296en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/6808
dc.description.abstractThis thesis investigates the problem of estimating the three-dimensional structure of a scene from a sequence of images. Structure information is recovered from images continuously using shading, motion or other visual mechanisms. A Kalman filter represents structure in a dense depth map. With each new image, the filter first updates the current depth map by a minimum variance estimate that best fits the new image data and the previous estimate. Then the structure estimate is predicted for the next time step by a transformation that accounts for relative camera motion. Experimental evaluation shows the significant improvement in quality and computation time that can be achieved using this technique.en_US
dc.format.extent149 p.en_US
dc.format.extent23730458 bytes
dc.format.extent8484961 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAITR-1296en_US
dc.subject3D reconstructionen_US
dc.subjectKalman Filteren_US
dc.subjecttemporal visionen_US
dc.subjectstructuresestimationen_US
dc.subjectsurface reconstructionen_US
dc.titleTemporal Surface Reconstructionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record