Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/71176.2

Show simple item record

dc.contributor.authorFox, Jacob
dc.contributor.authorLee, Choongbum
dc.contributor.authorSudakov, Benny
dc.date.accessioned2012-06-20T14:32:19Z
dc.date.available2012-06-20T14:32:19Z
dc.date.issued
dc.date.submitted2011
dc.identifier.issn0209-9683
dc.identifier.issn1439-6912
dc.identifier.urihttp://hdl.handle.net/1721.1/71176
dc.description.abstractFor a graph G, let (G) denote its chromatic number and (G) denote the order of the largest clique subdivision in G. Let H(n) be the maximum of (G)= (G) over all n-vertex graphs G. A famous conjecture of Haj os from 1961 states that (G) (G) for every graph G. That is, H(n) 1 for all positive integers n. This conjecture was disproved by Catlin in 1979. Erd}os and Fajtlowicz further showed by considering a random graph that H(n) cn1=2= log n for some absolute constant c > 0. In 1981 they conjectured that this bound is tight up to a constant factor in that there is some absolute constant C such that (G)= (G) Cn1=2= log n for all n-vertex graphs G. In this paper we prove the Erd}os-Fajtlowicz conjecture. The main ingredient in our proof, which might be of independent interest, is an estimate on the order of the largest clique subdivision which one can nd in every graph on n vertices with independence number .en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant DMS-110118)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER award DMS-0812005)en_US
dc.description.sponsorshipUnited States-Israel Binational Science Foundationen_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00493-012-2709-9
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleChromatic number, clique subdivisions, and the conjectures of Hajos and Erdos-Fajtlowiczen_US
dc.typeArticleen_US
dc.identifier.citationFox, Jacob, Choongbum Lee and Benny Sudakov. "Chromatic number, clique subdivisions, and the conjectures of Hajos and Erdos-Fajtlowicz." Combinatorica 32 (1) (January 2012) p. 111-123.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverFox, Jacob
dc.contributor.mitauthorFox, Jacob
dc.relation.journalCombinatoricaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFox, Jacob; Lee, Choongbum; Sudakov, Bennyen_US
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version