Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/71689.2

Show simple item record

dc.contributor.authorLusztig, George
dc.date.accessioned2012-07-18T18:39:02Z
dc.date.available2012-07-18T18:39:02Z
dc.date.issued
dc.date.submitted2012-01
dc.identifier.issn0304-9825
dc.identifier.urihttp://hdl.handle.net/1721.1/71689
dc.description.abstractIn [LV] the authors defined a Hecke algebra action and a bar involution on a vector space spanned by the involutions in a Weyl group. In this paper we give a new definition of the Hecke algebra action and the bar operator which, unlike the one in [LV], is completely elementary (does not use geometry) and in particular it makes sense for an arbitrary Coxeter group.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant DMS-0758262)en_US
dc.language.isoen_US
dc.publisherInstitute of Mathematics, Academia Sinicaen_US
dc.relation.isversionofhttp://w3.math.sinica.edu.tw/bulletin_ns/20123/2012302.pdf
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleA bar operator for involutions in a Coxeter groupen_US
dc.typeArticleen_US
dc.identifier.citationLusztig, George. "A bar operator for involutions in a Coxeter group." Bulletin of the Institute of Mathematics Academia Sinica (New Series) 7.3 (September 2012), p. 355-404.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverLusztig, George
dc.contributor.mitauthorLusztig, George
dc.relation.journalBulletin of the Institute of Mathematics Academia Sinica NSen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLusztig, Georgeen
dc.identifier.orcidhttps://orcid.org/0000-0001-9414-6892
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version