Show simple item record

dc.contributor.authorMarroquin, Jose L.en_US
dc.date.accessioned2004-10-20T20:49:55Z
dc.date.available2004-10-20T20:49:55Z
dc.date.issued1993-06-01en_US
dc.identifier.otherAIM-1433en_US
dc.identifier.otherCBCL-091en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/7211
dc.description.abstractThe computation of a piecewise smooth function that approximates a finite set of data points may be decomposed into two decoupled tasks: first, the computation of the locally smooth models, and hence, the segmentation of the data into classes that consist on the sets of points best approximated by each model, and second, the computation of the normalized discriminant functions for each induced class. The approximating function may then be computed as the optimal estimator with respect to this measure field. We give an efficient procedure for effecting both computations, and for the determination of the optimal number of components.en_US
dc.format.extent21 p.en_US
dc.format.extent2521920 bytes
dc.format.extent1964059 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAIM-1433en_US
dc.relation.ispartofseriesCBCL-091en_US
dc.subjectfunction approximationen_US
dc.subjectclassificationen_US
dc.subjectneural networksen_US
dc.titleMeasure Fields for Function Approximationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record