A 250 GHz photonic band gap gyrotron amplifier
Author(s)
Nanni, Emilio A. (Emilio Alessandro)
DownloadFull printable version (23.18Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Richard J. Temkin.
Terms of use
Metadata
Show full item recordAbstract
This thesis reports the theoretical and experimental investigation of a novel gyrotron traveling-wave-tube (TWT) amplifier at 250 GHz. The gyrotron amplifier designed and tested in this thesis has achieved a peak small signal gain of 38 dB at 247.7 GHz, with a 32 kV, 0.35 A electron beam and a 8.9 T magnetic field. The instantaneous -3 dB bandwidth of the amplifier at peak gain is 0.4 GHz. A peak output power of 45 W has been measured. The output power is not saturated but is limited by the 7.5 mW of available input power. The amplifier can be tuned for operation from 245- 256 GHz. With a gain of 24 dB and centered at 253.25 GHz the widest instantaneous -3 dB bandwidth of 4.5 GHz was observed for a 19 kV, 0.305 A electron beam. To achieve stable operation at these high frequencies, the amplifier uses a novel photonic band gap (PBG) interaction circuit. The PBG interaction circuit confines the TE₀₃-like mode which couples strongly to the electron beam. The PBG circuit provides stability from oscillations by supporting the propagation of TE modes in a narrow range of frequencies, allowing for the confinement of the operating TE₀₃-like mode while rejecting the excitation of oscillations at lower frequencies. Experimental results taken over a wide range of parameters, 15-30 kV and 0.25-0.5 A, show good agreement with a theoretical model. The theoretical model incorporates cold test measurements for the transmission line, input coupler, PBG waveguide and mode converter. This experiment achieved the highest frequency of operation (250 GHz) for a gyrotron amplifier. At present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high-output power. With 38 dB of gain and 45 W this is also the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier. The output power, output beam pattern, instantaneous bandwidth, spectral purity and shot-to-shot stability of the amplified pulse meet the basic requirements for the implementation of this device on a pulsed dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) spectrometer.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013. Cataloged from PDF version of thesis. Includes bibliographical references (p. 191-206).
Date issued
2013Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.