Active matter logic for autonomous microfluidics
Author(s)
Woodhouse, Francis G.; Dunkel, Joern
DownloadActive matter logic.pdf (397.5Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Chemically or optically powered active matter plays an increasingly important role in materials design, but its computational potential has yet to be explored systematically. The competition between energy consumption and dissipation imposes stringent physical constraints on the information transport in active flow networks, facilitating global optimization strategies that are not well understood. Here, we combine insights from recent
microbial experiments with concepts from lattice-field theory and non-equilibrium statistical mechanics to introduce a generic theoretical framework for active matter logic. Highlighting conceptual differences with classical and quantum computation, we demonstrate how the inherent non-locality of incompressible active flow networks can be utilized to construct universal logical operations, Fredkin gates and memory storage in set–reset latches through the synchronized self-organization of many individual network components. Our work lays the conceptual foundation for developing autonomous microfluidic transport devices driven by bacterial fluids, active liquid crystals or chemically engineered motile colloids.
Date issued
207-04Department
Massachusetts Institute of Technology. Department of MathematicsJournal
Nature Communications
Publisher
Nature Publishing Group
Citation
Woodhouse, Francis G., and J?rn Dunkel. “Active Matter Logic for Autonomous Microfluidics.” Nature Communications 8 (2017): 15169.
Version: Final published version
ISSN
2041-1723