Show simple item record

dc.contributor.authorWoodhouse, Francis G.
dc.contributor.authorDunkel, Joern
dc.date.accessioned2017-06-20T15:17:11Z
dc.date.available2017-06-20T15:17:11Z
dc.date.issued207-04
dc.date.submitted2016-11
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/110054
dc.description.abstractChemically or optically powered active matter plays an increasingly important role in materials design, but its computational potential has yet to be explored systematically. The competition between energy consumption and dissipation imposes stringent physical constraints on the information transport in active flow networks, facilitating global optimization strategies that are not well understood. Here, we combine insights from recent microbial experiments with concepts from lattice-field theory and non-equilibrium statistical mechanics to introduce a generic theoretical framework for active matter logic. Highlighting conceptual differences with classical and quantum computation, we demonstrate how the inherent non-locality of incompressible active flow networks can be utilized to construct universal logical operations, Fredkin gates and memory storage in set–reset latches through the synchronized self-organization of many individual network components. Our work lays the conceptual foundation for developing autonomous microfluidic transport devices driven by bacterial fluids, active liquid crystals or chemically engineered motile colloids.en_US
dc.description.sponsorshipAlfred P. Sloan Foundation. Fellowshipen_US
dc.description.sponsorshipMassachusetts Institute of Technology. Department of Mathematics (Edmund F. Kelly Research Award)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award CBET-1510768)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms15169en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleActive matter logic for autonomous microfluidicsen_US
dc.typeArticleen_US
dc.identifier.citationWoodhouse, Francis G., and J?rn Dunkel. “Active Matter Logic for Autonomous Microfluidics.” Nature Communications 8 (2017): 15169.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorDunkel, Joern
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWoodhouse, Francis G.; Dunkel, J?rnen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8865-2369
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record