Characterization of cubic Li$$_{2}$$$$^{100}$$MoO$$_4$$ crystals for the CUPID experiment
Author(s)
Armatol, A.; Armengaud, E.; Armstrong, W.; Augier, C.; Avignone, F. T.; Azzolini, O.; Barabash, A.; Bari, G.; Barresi, A.; Baudin, D.; Bellini, F.; Benato, G.; Beretta, M.; Bergé, L.; Biassoni, M.; Billard, J.; Boldrini, V.; Branca, A.; Brofferio, C.; Bucci, C.; Camilleri, J.; Capelli, S.; Cappelli, L.; Cardani, L.; Carniti, P.; Casali, N.; Cazes, A.; Celi, E.; Chang, C.; Chapellier, M.; Charrier, A.; Chiesa, D.; Clemenza, M.; Colantoni, I.; Collamati, F.; Copello, S.; Cremonesi, O.; J. Creswick, R.; Cruciani, A.; D’Addabbo, A.; D’Imperio, G.; Dafinei, I.; A. Danevich, F.; de Combarieu, M.; De Jesus, M.; de Marcillac, P.; Dell’Oro, S.; Di Domizio, S.; Dompè, V.; Drobizhev, A.; Dumoulin, L.; Fantini, G.; Faverzani, M.; Ferri, E.; Ferri, F.; Ferroni, F.; Figueroa-Feliciano, E.; Formaggio, J.; Franceschi, A.; Fu, C.; Fu, S.; Fujikawa, B. K.; Gascon, J.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Gras, P.; Gros, M.; Gutierrez, T. D.; Han, K.; Hansen, E. V.; Heeger, K. M.; Helis, D. L.; Huang, H. Z.; Huang, R. G.; Imbert, L.; Johnston, J.; Juillard, A.; Karapetrov, G.; Keppel, G.; Khalife, H.; Kobychev, V. V.; Kolomensky, Yu. G.; Konovalov, S.; Liu, Y.; Loaiza, P.; Ma, L.; Madhukuttan, M.; Mancarella, F.; Mariam, R.; Marini, L.; Marnieros, S.; Martinez, M.; Maruyama, R. H.; Mauri, B.; Mayer, D.; Mei, Y.; Milana, S.; Misiak, D.; Napolitano, T.; Nastasi, M.; Navick, X. F.; Nikkel, J.; Nipoti, R.; Nisi, S.; Nones, C.; Norman, E. B.; Novosad, V.; Nutini, I.; O’Donnell, T.; Olivieri, E.; Oriol, C.; Ouellet, J. L.; Pagan, S.; Pagliarone, C.; Pagnanini, L.; Pari, P.; Pattavina, L.; Paul, B.; Pavan, M.; Peng, H.; Pessina, G.; Pettinacci, V.; Pira, C.; Pirro, S.; V. Poda, D.; Polakovic, T.; Polischuk, O. G.; Pozzi, S.; Previtali, E.; Puiu, A.; Ressa, A.; Rizzoli, R.; Rosenfeld, C.; Rusconi, C.; Sanglard, V.; Scarpaci, J. A.; Schmidt, B.; Sharma, V.; Shlegel, V.; Singh, V.; Sisti, M.; Speller, D.; Surukuchi, P. T.; Taffarello, L.; Tellier, O.; Tomei, C.; Tretyak, V. I.; Tsymbaliuk, A.; Velazquez, M.; Vetter, K. J.; Wagaarachchi, S. L.; Wang, G.; Wang, L.; Welliver, B.; Wilson, J.; Wilson, K.; Winslow, L. A.; Xue, M.; Yan, L.; Yang, J.; Yefremenko, V.; Yumatov, V.; Zarytskyy, M. M.; Zhang, J.; Zolotarova, A.; Zucchelli, S.; ... Show more Show less
Download10052_2020_Article_8809.pdf (1.125Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
<jats:title>Abstract</jats:title><jats:p>The CUPID Collaboration is designing a tonne-scale, background-free detector to search for double beta decay with sufficient sensitivity to fully explore the parameter space corresponding to the inverted neutrino mass hierarchy scenario. One of the CUPID demonstrators, CUPID-Mo, has proved the potential of enriched Li<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{2}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mn>2</mml:mn>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula><jats:inline-formula><jats:alternatives><jats:tex-math>$$^{100}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow />
<mml:mn>100</mml:mn>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula>MoO<jats:inline-formula><jats:alternatives><jats:tex-math>$$_4$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mn>4</mml:mn>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> crystals as suitable detectors for neutrinoless double beta decay search. In this work, we characterised cubic crystals that, compared to the cylindrical crystals used by CUPID-Mo, are more appealing for the construction of tightly packed arrays. We measured an average energy resolution of (<jats:inline-formula><jats:alternatives><jats:tex-math>$$6.7\pm 0.6$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mn>6.7</mml:mn>
<mml:mo>±</mml:mo>
<mml:mn>0.6</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>) keV FWHM in the region of interest, approaching the CUPID target of 5 keV FWHM. We assessed the identification of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\alpha $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>α</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula> particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this <jats:inline-formula><jats:alternatives><jats:tex-math>$$\alpha $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>α</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula>-induced background contribution. We also used the collected data to validate a Monte Carlo simulation modelling the light collection efficiency, which will enable further optimisations of the detector.</jats:p>
Date issued
2021-02Department
Massachusetts Institute of Technology. Department of PhysicsJournal
European Physical Journal C
Publisher
Springer Science and Business Media LLC
Citation
The European Physical Journal C. 2021 Feb 01;81(2):104
Version: Final published version
ISSN
1434-6044
1434-6052