Computation and Simulation of the Effect of Microstructures on Material Properties
Author(s)
Carter, W. Craig
DownloadAMMNS005.pdf (1.013Mb)
Metadata
Show full item recordAbstract
Many material properties depend on specific details of microstructure and both optimal material performance and material reliability often correlate directly to microstructure. In nano- and micro-systems, the material's microstructure has a characteristic length scale that approaches that of the device in which it is used. Fundamental understanding and prediction of material behavior in nano- and micro-systems depend critically on methods for computing the effect of microstructure. Methods for including the physics and spatial attributes of microstructures are presented for a number of materials applications in devices. The research in our group includes applications of computation of macroscopic response of material microstructures, the development of methods for calculating microstructural evolution, and the morphological stability of structures. In this review, research highlights are presented for particular methods for computing the response in: 1) rechargeable lithium ion battery microstructures, 2) photonic composites with anisotropic particulate morphologies, 3) crack deflection in partially devitrified metallic glasses.
Date issued
2003-01Series/Report no.
Advanced Materials for Micro- and Nano-Systems (AMMNS);
Keywords
microstructure, nano-systems, micro-systems, rechargeable lithium ion batteries, photonic composites, crack deflection, partially devitrified metallic glass, anisotropic morphology