Component based recognition of objects in an office environment
Author(s)
Morgenstern, Christian; Heisele, Bernd
DownloadAIM-2003-024.ps (3.407Mb)
Additional downloads
Metadata
Show full item recordAbstract
We present a component-based approach for recognizing objects under large pose changes. From a set of training images of a given object we extract a large number of components which are clustered based on the similarity of their image features and their locations within the object image. The cluster centers build an initial set of component templates from which we select a subset for the final recognizer. In experiments we evaluate different sizes and types of components and three standard techniques for component selection. The component classifiers are finally compared to global classifiers on a database of four objects.
Date issued
2003-11-28Other identifiers
AIM-2003-024
CBCL-232
Series/Report no.
AIM-2003-024CBCL-232
Keywords
AI, computer vision, object recognition, component object recognition