Show simple item record

dc.contributor.authorMorgenstern, Christianen_US
dc.contributor.authorHeisele, Bernden_US
dc.date.accessioned2004-10-20T21:05:16Z
dc.date.available2004-10-20T21:05:16Z
dc.date.issued2003-11-28en_US
dc.identifier.otherAIM-2003-024en_US
dc.identifier.otherCBCL-232en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/7279
dc.description.abstractWe present a component-based approach for recognizing objects under large pose changes. From a set of training images of a given object we extract a large number of components which are clustered based on the similarity of their image features and their locations within the object image. The cluster centers build an initial set of component templates from which we select a subset for the final recognizer. In experiments we evaluate different sizes and types of components and three standard techniques for component selection. The component classifiers are finally compared to global classifiers on a database of four objects.en_US
dc.format.extent12 p.en_US
dc.format.extent3572823 bytes
dc.format.extent962401 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAIM-2003-024en_US
dc.relation.ispartofseriesCBCL-232en_US
dc.subjectAIen_US
dc.subjectcomputer visionen_US
dc.subjectobject recognitionen_US
dc.subjectcomponent object recognitionen_US
dc.titleComponent based recognition of objects in an office environmenten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record